
File Handling 4:
Streaming Objects
by Brian Long

Having looked at file variables
and file handles in previous

articles, we will now turn our
attention to streams, with a slight
digression on our way through.
These possibly unfamiliar items
are used by Delphi developers
day in and day out under the guise
of form files, but more of that
later...

Stream Definition
A stream is intended to be a generic
interface to any storage medium.
The storage medium could be,
amongst other possibilities, a
block of memory, a disk file, a data-
base BLOB field or a Windows
resource file. In Delphi there are
several stream types, all unsurpris-
ingly represented by objects. They
are all derived from the abstract
class (ie useless as a class for
instantiating objects, but useful as
a basis for deriving more specific
classes) TStream.

Basic Stream Capabilities
Any Delphi stream object has at
least two properties. The current
position within the stream is given
by the Position property and the
size of the stream is given by Size.
To move to a different position in
the stream there is a method called
Seek (rather similar to FileSeek as
used with file handles). This takes
an offset to move by and another
parameter indicating where to
move from. This can be one of the
symbols shown in Table 1. If Seek is
successful, it returns the new
position in the stream.

To write to the stream, you call
the Write method, which takes an
untyped const parameter that acts
as an information buffer, and a
number of bytes to write. It will
return the number of bytes written.
The implication of the parameter
being untyped is that any data item
can be passed.

The implementation of a const or
var parameter where a variable is
passed (a pass by reference
parameter) is that the address of
the actual argument is passed
(transparently to the program-
mer). If there is no type supplied in
the parameter list of the subrou-
tine definition then any variable
will be accepted and its address
gets passed along to the routine.
The Read method takes an untyped
var parameter and a byte count,
and returns the number of bytes
read.

In addition to this basic set of
functionality, a stream object also
has a CopyFrom method which
knows how to read data from an-
other stream, and also methods to
write and read components to and
from itself. The WriteComponent and
ReadComponent methods are com-
plemented by WriteComponentRes
and ReadComponentRes, which write
and read a standard Windows

resource file header before the
component respectively. These
can be used to manufacture
custom resource files filled with
components that can be linked into
your executable.

Types Of Streams
Delphi 1.0x offers a number of
specific stream types, and Delphi 2
adds another one to the list, as
shown in Table 2.

A THandleStream (and conse-
quently a TFileStream) have a read-
only Handle property to surface the
file handle. When creating a
TFileStream object, you pass the
file name to the constructor and
also a file access mode. These
modes were discussed in the last
issue, but there is an additional one
available. If you wish your file
stream to represent a newly
created file, then you can use the
fmCreate mode and it will
endeavour to honour that request.

Stream class Comments
THandleStream Takes an existing open file handle and allows

you to access the file as a stream.
TFileStream Takes a filename and a file access mode and

treats the file as a stream. Based on a
THandleStream.

TBlobStream Takes a BLOB field and a BLOB access mode
(bmRead, bmWrite or bmReadWrite). Used to
manipulate BLOB field data.

TMemoryStream Treats a block of memory as a stream.
TResourceStream New in Delphi 2. Takes an executable’s

instance handle, a resource name or number
and a resource type and lets you access a
Windows resource as a stream.

➤ Table 2: Stream types

Symbol Implication for the Offset Parameter
soFromBeginning Relative to the beginning of the stream
soFromCurrent Relative to the current stream position
soFromEnd Relative to the end of the stream

➤ Table 1: Symbols for the Seek method

10 The Delphi Magazine Issue 9

A TMemoryStream has a Memory
property which returns a pointer
to the beginning of the memory
block. To start with it has no mem-
ory allocated and so Memory will be
nil. You can make a memory
stream as large as you like using
the SetSize method; however, be
warned that this disposes of any
currently allocated memory
through a call to its Clear method.
Normally when writing to a mem-
ory stream, if it finds it hasn’t got
enough memory, it will allocate as
much as is needed, rounding up to
the nearest 8Kb. It is good practice
to call SetSize straight after con-
structing a memory stream, pass-
ing a value that is as large as you
need in the short term future, thus
preventing lots of re-allocations.

A TResourceStream also has a
Memory property, although this isn’t
used much. This object is designed
for reading components from cus-
tom resources in your executable.
We’ll have a look at this later. To
show a resource stream in opera-
tion (though not reading compo-
nents) and also a TMemoryStream,
consider the Tips & Tricks entry in
Issue 5 (January 1996) that gave a
TBitmap derivative which could
read a 256 colour bitmap from a
resource. It used several APIs to
locate the bitmap resource, and
then used a memory stream to
communicate the data to a TBitmap
object. The code looked like that in
Listing 1.

We can make use of a Delphi 2
TResourceStream by changing the
code to be as shown in Listing 2.
The complete details of the two
listings aren’t important in this
context, but notice that I have
elected not to call the memory
stream’s SetSize method and also I
am making use of the fact that
CopyFrom understands that a
second parameter of value zero
means ‘copy all of the stream’.

Both versions rely on the fact
that a TBitmap object can set itself
up from data on a stream, by using
its LoadFromStream method. Many
objects have a LoadFromStream and
a corresponding SaveToStream
method to allow storage or
retrieval of their data to or from a
stream. Those that do are:

➣ TGraphic and its descendants
TIcon, TMetafile and TBitmap;

➣ TStrings and its descendent
TStringList;

➣ TMemoryStream;
➣ TBlobField and its descendants

TGraphicField and TMemoField;
➣ TOleContainer;
➣ TOutline;
➣ TTreeView (Delphi 2 only).

Streaming Data
Reading from and writing to a
stream is reasonably straightfor-
ward for normal data types and
matches up quite well with file
handle operations. For example, to
write a variable called I to a stream
you would use:

MyStream.Write(I, SizeOf(I));

TResBitmap = class(TBitmap)
public
 constructor Create(ID: PChar);
end;
...
constructor TResBitmap.Create(ID: PChar);
var
 HResInfo: THandle;
 MemHandle: THandle;
 Stream: TMemoryStream;
 ResPtr: PByte;
 ResSize: Longint;
const
 BMF: TBitmapFileHeader = (bfType: $4D42);
begin
 inherited Create;
 HResInfo := FindResource(HInstance, ID, RT_Bitmap);
 ResSize := SizeofResource(HInstance, HResInfo);
 MemHandle := LoadResource(HInstance, HResInfo);
 ResPtr := LockResource(MemHandle);
 Stream := TMemoryStream.Create;
 try
 Stream.Write(BMF, SizeOf(BMF));
 Stream.Write(ResPtr^, ResSize);
 FreeResource(MemHandle);
 Stream.Seek(0, soFromBeginning);
 LoadFromStream(Stream);
 finally
 Stream.Free;
 end;
end;

➤ Listing 1

TResBitmap2 = class(TBitmap)
public
 constructor Create(ID: PChar);
end;
...
constructor TResBitmap2.Create(ID: PChar);
var
 ResStream: TResourceStream;
 Stream: TMemoryStream;
const
 BMF: TBitmapFileHeader = (bfType: $4D42);
begin
 inherited Create;
 ResStream := TResourceStream.Create(HInstance, ID, RT_Bitmap);
 try
 Stream := TMemoryStream.Create;
 try
 Stream.Write(BMF, SizeOf(BMF));
 Stream.CopyFrom(ResStream, 0);
 Stream.Seek(0, soFromBeginning);
 LoadFromStream(Stream);
 finally
 Stream.Free;
 end;
 finally
 ResStream.Free;
 end;
end;

➤ Listing 2

12 The Delphi Magazine Issue 9

and to read it back in would
require:

MyStream.Read(I, SizeOf(I));

If you have delved into pointers
and, for example, you have a
pointer to a Longint called P, you
could use:

MyStream.Write(
 P^, SizeOf(Longint));
...
MyStream.Read(
 P^, SizeOf(Longint));

NAMES.EXE Version 4
The NAMES.DPR “database” pro-
ject which went through three
versions in the previous issue gets
another rewrite this time round.
When we left it, version 3 was using
a file handle. This changes in
NAMES4.DPR to be a TFileStream.
The TDataFile constructor has the
job of either opening the data file,
or creating and then opening the
data file. Using a file stream, the
code looks like that shown in
Listing 3. The destructor simply
calls FDataFile.Free. The size of the
file in terms of data records, as
returned by GetCount, can be
implemented as:

Result := FDataFile.Size div
 SizeOf(TDataRec);

We can find the current position in
GetCurrent by using Seek, as we did
last time around:

Result := FDataFile.Seek(
 0, soFromCurrent);
if Result > -1 then
 Result := Result div
 SizeOf(TDataRec);

and go to a requested record
similarly:

FDataFile.Seek(
 RecNo * SizeOf(TDataRec),
 soFromBeginning);

The record reading and writing
operations are also pretty much
the same as before. The full imple-
mentation is included on the disk
with this issue in the unit
NAMES4U2.PAS.

Making Objects Streamable
If you are interested in streaming
objects then things get a little more
involved. Objects do not inherently
know how to stream themselves.
Objects that do know how are
termed persistent objects – their
data can potentially live on after a
program has finished. There is a
type called TPersistent in the VCL
that is intended to act as a basis for
all persistent objects – all objects
that can potentially be streamed.
Unfortunately, all the VCL-supplied
mechanics for reading and writing
persistent objects operate solely
on objects based on a descendent
of TPersistent called TComponent. So
components can be streamed in a
standard and well-supported way,
but other objects can’t. Let’s look
into how we can get any arbitrary
object into and out of a stream.

What we need to do rather
depends on what we want to
achieve. If we want a stream filled
with the data of many objects of the
same class, then we can simply add

our own LoadFromStream and
SaveToStream methods directly to
that class. Here’s a simple example
to demonstrate this, which makes
use of a TList populated with
TPointData objects, where
TPointData merely holds X and Y
co-ordinates. To make it have a
point (pun not intended) it has a
method to swap the X and Y co-
ordinates and a choice of construc-
tors. The normal constructor is
inherited from type TObject and, if
it is called, X and Y will be left with
their default values of zero (all
object data fields are initialised
with zeros, a very handy feature).
The alternative constructor
CreateXY takes two parameters and
sets X and Y with those values.

Our TPointData class will not be
derived from type TPersistent
since we won’t be using the VCL-
supplied streaming mechanism
(we don’t have TComponent as an
ancestor, so we can’t use it). This
example is supplied in the project
STRM1.DPR and the interesting

TPointData = class
 public
 X, Y: Word;
 constructor CreateXY(AX, AY: Word);
 procedure SwapXY;
 procedure LoadFromStream(Stream: TStream); virtual;
 procedure SaveToStream(Stream: TStream); virtual;
 end;
...
procedure TPointData.LoadFromStream(Stream: TStream);
begin
 Stream.Read(X, SizeOf(X));
 Stream.Read(Y, SizeOf(Y));
end;

procedure TPointData.SaveToStream(Stream: TStream);
begin
 Stream.Write(X, SizeOf(X));
 Stream.Write(Y, SizeOf(Y));
end;

➤ Listing 4

constructor TDataFile.Create;
begin
 { Make current directory where EXE file is, just in case }
 ChDir(ExtractFilePath(Application.ExeName));
 { Make file if it ain’t there }
 if not FileExists(FileName) then begin
 { We don’t need a try..finally block here cos if the file creation
 fails, the constructor raises an exception which causes the object
 to be freed }
 FDataFile := TFileStream.Create(FileName, fmCreate);
 FDataFile.Free;
 end;
 FDataFile := TFileStream.Create(
 FileName, fmOpenReadWrite or fmShareDenyNone);
end;

➤ Listing 3

14 The Delphi Magazine Issue 9

code is in STRM1U.PAS. The
object’s definition and the stream
access methods are shown in
Listing 4.

The program that uses this class
looks like Figure 1. The Generate
button makes a random number of
TPointData objects and stores them
in a TList object called PointList.
The Save button iterates through
the list and calls the SaveToStream
method for each PointData object,

➤ Figure 1

procedure TForm1.ClearPoints;
begin
 while PointList.Count > 0 do begin
 TPointData(PointList[0]).Free;
 PointList.Delete(0);
 end;
end;

procedure TForm1.PaintBox1Paint(Sender: TObject);
begin
 for Loop := 0 to PointList.Count - 1 do begin
 Pt := TPointData(PointList.Items[Loop]);
 if Loop = 0 then
 PaintBox1.Canvas.MoveTo(Pt.X, Pt.Y)
 else
 PaintBox1.Canvas.LineTo(Pt.X, Pt.Y)
 end;
end;

procedure TForm1.MakeBtnClick(Sender: TObject);
begin
 ClearPoints;
 for Loop := 1 to 20 do begin
 Pt := TPointData.CreateXY(Random(PaintBox1.Width),
 Random(PaintBox1.Height));
 PointList.Add(Pt);
 PaintBox1.Invalidate;
 end;
end;

procedure TForm1.SaveBtnClick(Sender: TObject);
var Stream: TFileStream;
begin
 Stream := TFileStream.Create(DataFile, fmCreate);
 try
 for Loop := 0 to PointList.Count - 1 do begin

 Pt := TPointData(PointList.Items[Loop]);
 Pt.SaveToStream(Stream);
 end;
 finally
 Stream.Free;
 end;
 ClearPoints;
 PaintBox1.Invalidate;
end;

procedure TForm1.LoadBtnClick(Sender: TObject);
var
 Stream: TFileStream;
begin
 ClearPoints;
 Stream := TFileStream.Create(DataFile,
 fmOpenRead or fmShareDenyWrite);
 try
 while Stream.Position <> Stream.Size do begin
 Pt := TPointData.Create;
 Pt.LoadFromStream(Stream);
 PointList.Add(Pt);
 end;
 finally
 Stream.Free;
 end;
 PaintBox1.Invalidate;
end;

procedure TForm1.SwapBtnClick(Sender: TObject);
begin
 for Loop := 0 to PointList.Count - 1 do
 TPointData(PointList.Items[Loop]).SwapXY;
 PaintBox1.Invalidate;
end;

➤ Listing 5

then empties the list. The Load
button reads through the stream,
creating an object and calling its
LoadFromStream method until the
end of the stream is reached.
Lastly, the Swap button will iterate
through the list and call the
objects’ SwapXY methods. When-
ever points are made or altered,
they are drawn in a paint box on the
form. The useful code is shown in
Listing 5.

Adding the SaveToStream and
LoadFromStream methods to an
object allows its data to be
streamed and this approach is just
as applicable if you have a set num-
ber of custom objects of different
types that need to be streamed in
a particular order.

However, this is not really all
that object streaming can be. So
far, when reading from the stream
we need to know beforehand what
object is next in the stream, so that
we can construct one, and then call
one of its methods to get it to read
its own data. Object streaming can
be much more flexible. Delphi does
support this extra flexibility but
only for classes derived from type
TComponent.

Design-Time
Stream Requirements
One of the main uses of an object
stream is to remove repetitive
functionality from a program. If
your program uses a set of objects
each time it runs, and when it starts
it initialises those objects, then
your program is wasting a certain
amount of time each run doing this
initialisation. Much better would
be to use another small utility

May 1996 The Delphi Magazine 15

program to set up the objects and
write them to a stream and then
your main program can just read
the stream in each time it runs.
This is exactly what Delphi does. It
makes an object stream (a form
file) to represent each of your
forms at design time (when your
program is not running), and then
rather than you having to set up all
your components each time you
run your program, the streams are
read in as needed when forms are
created and all the objects on them
are automatically created, with all
their properties set up.

What is it about TPersistent that
makes components inherently
streamable? If you’ve ever investi-
gated what goes into a form file,
you’ll have found that it is a bunch
of property names and their val-
ues. How does Delphi know what to
write into a form file? Well it’s all to
do with run-time type information
(RTTI). The story goes like this.

Delphi writes property values
into a form that appear on the
Object Inspector. As you will know,
properties appear on the Object
Inspector only if they are declared
in the published section of an ob-
ject and an object can only have a

published section if the compiler
has been told to generate RTTI for
it, or one of its ancestors. In Delphi
1, the undocumented compiler
directive $M+ tells the compiler to
generate RTTI. TObject is compiled
in a $M- state (if you make a class
inherited from TObject and put a
published section in, you will get
Error 200: PUBLISHED not allowed
in this class). TPersistent is
compiled in the $M+ state. This
means that anything derived from
TPersistent can have a published
section and RTTI will be available
for all entries in that section.

In Delphi 2, a compiler bug
means that this directive is always
on, so any object can now have a
published section, not just those
derived from TPersistent.

 The Object Inspector makes use
of RTTI to show the properties and
allow their values to be changed.
The form designer makes use of the
information to save the properties
to a form file and to read them back
in again. This functionality is avail-
able to you as a programmer (as we
will see next time).

The RTTI can be examined and
manipulated using the functional-
ity implemented in the TypInfo unit

(undocumented but the interface
section is supplied in the DOC
directory in the file TYPINFO.INT).
There’s enough material in that
and TObject itself to make another
article on RTTI investigation, but
next time we’ll sate our appetites
with more on streaming compo-
nents, before coming back online
with text file device drivers.

And Finally...
One or two comments were made
about the code from last month’s
article. Thanks to the readers who
let us know about the problems,
which I’m pleased to say I have
fixes for!

As I’ve just completely run out of
space, the updates are included on
the disk in the README.TXT file in
the FILES directory, along with new
source files too.

Brian Long is an independent
consultant and trainer specialising
in Delphi. His email address is
76004.3437@compuserve.com

Copyright ©1995 Brian Long
All rights reserved.

	Stream Definition
	Basic Stream Capabilites
	Types of Streams
	Streaming Data
	NAMES.EXE Version 4
	Making Objects Streamable
	Design-Time Stream Requirements
	And Finally.....

